Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 096502, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489610

RESUMO

Low-disorder two-dimensional electron systems in the presence of a strong, perpendicular magnetic field terminate at very small Landau level filling factors in a Wigner crystal (WC), where the electrons form an ordered array to minimize the Coulomb repulsion. The nature of this exotic, many-body, quantum phase is yet to be fully understood and experimentally revealed. Here we probe one of WC's most fundamental parameters, namely, the energy gap that determines its low-temperature conductivity, in record mobility, ultrahigh-purity, two-dimensional electrons confined to GaAs quantum wells. The WC domains in these samples contain ≃1000 electrons. The measured gaps are a factor of three larger than previously reported for lower quality samples, and agree remarkably well with values predicted for the lowest-energy, intrinsic, hypercorrelated bubble defects in a WC made of flux-electron composite fermions, rather than bare electrons. The agreement is particularly noteworthy, given that the calculations are done for disorder-free composite fermion WCs, and there are no adjustable parameters. The results reflect the exceptionally high quality of the samples, and suggest that composite fermion WCs are indeed more stable compared to their electron counterparts.

2.
Nat Commun ; 15(1): 1461, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368413

RESUMO

The composite fermion theory opened a new chapter in understanding many-body correlations through the formation of emergent particles. The formation of two-flux and four-flux composite fermions is well established. While there are limited data linked to the formation of six-flux composite fermions, topological protection associated with them is conspicuously lacking. Here we report evidence for the formation of a quantized and gapped fractional quantum Hall state at the filling factor ν = 9/11, which we associate with the formation of six-flux composite fermions. Our result provides evidence for the most intricate composite fermion with six fluxes and expands the already diverse family of highly correlated topological phases with a new member that cannot be characterized by correlations present in other known members. Our observations pave the way towards the study of higher order correlations in the fractional quantum Hall regime.

3.
Phys Rev Lett ; 131(23): 236501, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134784

RESUMO

In low-disorder, two-dimensional electron systems (2DESs), the fractional quantum Hall states at very small Landau level fillings (ν) terminate in a Wigner solid (WS) phase, where electrons arrange themselves in a periodic array. The WS is typically pinned by the residual disorder sites and manifests an insulating behavior, with nonlinear current-voltage (I-V) and noise characteristics. We report here measurements on an ultralow-disorder, dilute 2DES, confined to a GaAs quantum well. In the ν<1/5 range, superimposed on a highly insulating longitudinal resistance, the 2DES exhibits a developing fractional quantum Hall state at ν=1/7, attesting to its exceptional high quality and dominance of electron-electron interaction in the low filling regime. In the nearby insulating phases, we observe remarkable nonlinear I-V and noise characteristics as a function of increasing current, with current thresholds delineating three distinct phases of the WS: a pinned phase (P1) with very small noise, a second phase (P2) in which dV/dI fluctuates between positive and negative values and is accompanied by very high noise, and a third phase (P3) where dV/dI is nearly constant and small, and noise is about an order of magnitude lower than in P2. In the depinned (P2 and P3) phases, the noise spectrum also reveals well-defined peaks at frequencies that vary linearly with the applied current, suggestive of washboard frequencies. We discuss the data in light of a recent theory that proposes different dynamic phases for a driven WS.

4.
Nat Commun ; 14(1): 7440, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978193

RESUMO

Real-time probing of electrons can uncover intricate relaxation mechanisms and many-body interactions in strongly correlated materials. Here, we introduce time, momentum, and energy resolved pump-probe tunneling spectroscopy (Tr-MERTS). The method allows the injection of electrons at a particular energy and observation of their subsequent decay in energy-momentum space. Using Tr-MERTS, we visualize electronic decay processes, with lifetimes from tens of nanoseconds to tens of microseconds, in Landau levels formed in a GaAs quantum well. Although most observed features agree with simple energy-relaxation, we discovered a splitting in the nonequilibrium energy spectrum in the vicinity of a ferromagnetic state. An exact diagonalization study suggests that the splitting arises from a maximally spin-polarized state with higher energy than a conventional equilibrium skyrmion. Furthermore, we observe time-dependent relaxation of the splitting, which we attribute to single-flipped spins forming skyrmions. These results establish Tr-MERTS as a powerful tool for studying the properties of a 2DES beyond equilibrium.

5.
Phys Rev Lett ; 131(5): 056302, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595236

RESUMO

The even-denominator fractional quantum Hall states (FQHSs) in half-filled Landau levels are generally believed to host non-Abelian quasiparticles and be of potential use in topological quantum computing. Of particular interest is the competition and interplay between the even-denominator FQHSs and other ground states, such as anisotropic phases and composite fermion Fermi seas. Here, we report the observation of an even-denominator fractional quantum Hall state with highly anisotropic in-plane transport coefficients at Landau level filling factor ν=3/2. We observe this state in an ultra-high-quality GaAs two-dimensional hole system when a large in-plane magnetic field is applied. By increasing the in-plane field, we observe a sharp transition from an isotropic composite fermion Fermi sea to an anisotropic even-denominator FQHS. Our data and calculations suggest that a unique feature of two-dimensional holes, namely the coupling between heavy-hole and light-hole states, combines different orbital components in the wave function of one Landau level, and leads to the emergence of a highly anisotropic even-denominator fractional quantum Hall state. Our results demonstrate that the GaAs two-dimensional hole system is a unique platform for the exploration of exotic, many-body ground states.

6.
Phys Rev Lett ; 130(22): 226503, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327438

RESUMO

Disorder and electron-electron interaction play essential roles in the physics of electron systems in condensed matter. In two-dimensional, quantum Hall systems, extensive studies of disorder-induced localization have led to the emergence of a scaling picture with a single extended state, characterized by a power-law divergence of the localization length in the zero-temperature limit. Experimentally, scaling has been investigated via measuring the temperature dependence of plateau-to-plateau transitions between the integer quantum Hall states (IQHSs), yielding a critical exponent κ≃0.42. Here we report scaling measurements in the fractional quantum Hall state (FQHS) regime where interaction plays a dominant role. Our Letter is partly motivated by recent calculations, based on the composite fermion theory, that suggest identical critical exponents in both IQHS and FQHS cases to the extent that the interaction between composite fermions is negligible. The samples used in our experiments are two-dimensional electron systems confined to GaAs quantum wells of exceptionally high quality. We find that κ varies for transitions between different FQHSs observed on the flanks of Landau level filling factor ν=1/2 and has a value close to that reported for the IQHS transitions only for a limited number of transitions between high-order FQHSs with intermediate strength. We discuss possible origins of the nonuniversal κ observed in our experiments.


Assuntos
Elétrons , Física , Temperatura
7.
Phys Rev Lett ; 130(12): 126301, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027870

RESUMO

Fractional quantum Hall states (FQHSs) at even-denominator Landau level filling factors (ν) are of prime interest as they are predicted to host exotic, topological states of matter. We report here the observation of a FQHS at ν=1/2 in a two-dimensional electron system of exceptionally high quality, confined to a wide AlAs quantum well, where the electrons can occupy multiple conduction-band valleys with an anisotropic effective mass. The anisotropy and multivalley degree of freedom offer an unprecedented tunability of the ν=1/2 FQHS as we can control both the valley occupancy via the application of in-plane strain, and the ratio between the strengths of the short- and long-range Coulomb interaction by tilting the sample in the magnetic field to change the electron charge distribution. Thanks to this tunability, we observe phase transitions from a compressible Fermi liquid to an incompressible FQHS and then to an insulating phase as a function of tilt angle. We find that this evolution and the energy gap of the ν=1/2 FQHS depend strongly on valley occupancy.

8.
Phys Rev Lett ; 131(26): 266502, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215363

RESUMO

Single-component fractional quantum Hall states (FQHSs) at even-denominator filling factors may host non-Abelian quasiparticles that are considered to be building blocks of topological quantum computers. Such states, however, are rarely observed in the lowest-energy Landau level, namely at filling factors ν<1. Here, we report evidence for an even-denominator FQHS at ν=1/4 in ultra-high-quality two-dimensional hole systems confined to modulation-doped GaAs quantum wells. We observe a deep minimum in the longitudinal resistance at ν=1/4, superimposed on a highly insulating background, suggesting a close competition between the ν=1/4 FQHS and the magnetic-field-induced, pinned Wigner solid states. Our experimental observations are consistent with the very recent theoretical calculations that predict that substantial Landau level mixing, caused by the large hole effective mass, can induce composite fermion pairing and lead to a non-Abelian FQHS at ν=1/4. Our results demonstrate that Landau level mixing can provide a very potent means for tuning the interaction between composite fermions and creating new non-Abelian FQHSs.

9.
Phys Rev Lett ; 129(19): 196801, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399735

RESUMO

In a low-disorder two-dimensional electron system, when two Landau levels of opposite spin or pseudospin cross at the Fermi level, the dominance of the exchange energy can lead to a ferromagnetic, quantum Hall ground state whose gap is determined by the exchange energy and has skyrmions as its excitations. This is normally achieved via applying either hydrostatic pressure or uniaxial strain. We study here a very high-quality, low-density, two-dimensional hole system, confined to a 30-nm-wide (001) GaAs quantum well, in which the two lowest-energy Landau levels can be gate tuned to cross at and near filling factor ν=1. As we tune the field position of the crossing from one side of ν=1 to the other by changing the hole density, the energy gap for the quantum Hall state at ν=1 remains exceptionally large, and only shows a small dip near the crossing. The gap overall follows a sqrt[B] dependence, expected for the exchange energy. Our data are consistent with a robust quantum Hall ferromagnet as the ground state.

10.
Phys Rev Lett ; 129(15): 156801, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269975

RESUMO

Fractional quantum Hall states (FQHSs) exemplify exotic phases of low-disorder two-dimensional (2D) electron systems when electron-electron interaction dominates over the thermal and kinetic energies. Particularly intriguing among the FQHSs are those observed at even-denominator Landau level filling factors, as their quasiparticles are generally believed to obey non-Abelian statistics and be of potential use in topological quantum computing. Such states, however, are very rare and fragile, and are typically observed in the excited Landau level of 2D electron systems with the lowest amount of disorder. Here we report the observation of a new and unexpected even-denominator FQHS at filling factor ν=3/4 in a GaAs 2D hole system with an exceptionally high quality (mobility). Our magnetotransport measurements reveal a strong minimum in the longitudinal resistance at ν=3/4, accompanied by a developing Hall plateau centered at (h/e^{2})/(3/4). This even-denominator FQHS is very unusual as it is observed in the lowest Landau level and in a 2D hole system. While its origin is unclear, it is likely a non-Abelian state, emerging from the residual interaction between composite fermions.

11.
Phys Rev Lett ; 129(3): 036601, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905352

RESUMO

The interplay between the Fermi sea anisotropy, electron-electron interaction, and localization phenomena can give rise to exotic many-body phases. An exciting example is an anisotropic two-dimensional (2D) Wigner solid (WS), where electrons form an ordered array with an anisotropic lattice structure. Such a state has eluded experiments up to now as its realization is extremely demanding: First, a WS entails very low densities where the Coulomb interaction dominates over the kinetic (Fermi) energy. Attaining such low densities while keeping the disorder low is very challenging. Second, the low-density requirement has to be fulfilled in a material that hosts an anisotropic Fermi sea. Here, we report transport measurements in a clean (low-disorder) 2D electron system with anisotropic effective mass and Fermi sea. The data reveal that at extremely low electron densities, when the r_{s} parameter, the ratio of the Coulomb to the Fermi energy, exceeds ≃38, the current-voltage characteristics become strongly nonlinear at small dc biases. Several key features of the nonlinear characteristics, including their anisotropic voltage thresholds, are consistent with the formation of a disordered, anisotropic WS pinned by the ubiquitous disorder potential.

12.
Phys Rev Lett ; 128(2): 026802, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089735

RESUMO

The ground state of two-dimensional electron systems (2DESs) at low Landau level filling factors (ν≲1/6) has long been a topic of interest and controversy in condensed matter. Following the recent breakthrough in the quality of ultrahigh-mobility GaAs 2DESs, we revisit this problem experimentally and investigate the impact of reduced disorder. In a GaAs 2DES sample with density n=6.1×10^{10}/cm^{2} and mobility µ=25×10^{6} cm^{2}/V s, we find a deep minimum in the longitudinal magnetoresistance (R_{xx}) at ν=1/7 when T≃104 mK. There is also a clear sign of a developing minimum in R_{xx} at ν=2/13. While insulating phases are still predominant when ν≲1/6, these minima strongly suggest the existence of fractional quantum Hall states at filling factors that comply with the Jain sequence ν=p/(2mp±1) even in the very low Landau level filling limit. The magnetic-field-dependent activation energies deduced from the relation R_{xx}∝e^{E_{A}/2kT} corroborate this view and imply the presence of pinned Wigner solid states when ν≠p/(2mp±1). Similar results are seen in another sample with a lower density, further generalizing our observations.

13.
Phys Rev Lett ; 127(11): 116601, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558923

RESUMO

Memory or transistor devices based on an electron's spin rather than its charge degree of freedom offer certain distinct advantages and comprise a cornerstone of spintronics. Recent years have witnessed the emergence of a new field, valleytronics, which seeks to exploit an electron's valley index rather than its spin. An important component in this quest would be the ability to control the valley index in a convenient fashion. Here we show that the valley polarization can be switched from zero to 1 by a small reduction in density, simply tuned by a gate bias, in a two-dimensional electron system. This phenomenon, which is akin to Bloch spin ferromagnetism, arises fundamentally as a result of electron-electron interaction in an itinerant, dilute electron system. Essentially, the kinetic energy favors an equal distribution of electrons over the available valleys, whereas the interaction between electrons prefers single-valley occupancy below a critical density. The gate-bias-tuned transition we observe is accompanied by a sudden, twofold change in sample resistance, making the phenomenon of interest for potential valleytronic transistor device applications. Our observation constitutes a quintessential demonstration of valleytronics in a very simple experiment.

14.
Phys Rev Lett ; 127(5): 056801, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397247

RESUMO

The fractional quantum Hall effect stands as a quintessential manifestation of an interacting two-dimensional electron system. One of the fractional quantum Hall effect's most fundamental characteristics is the energy gap separating the incompressible ground state from its excitations. Yet, despite nearly four decades of investigations, a quantitative agreement between the theoretically calculated and experimentally measured energy gaps is lacking. Here we report a systematic experimental study that incorporates very high-quality two-dimensional electron systems confined to GaAs quantum wells with fixed density and varying well widths. The results demonstrate a clear decrease of the energy gap as the electron layer is made thicker and the short-range component of the Coulomb interaction is weakened. We also provide a quantitative comparison between the measured energy gaps and the available theoretical calculations that takes into account the role of finite layer thickness and Landau level mixing. All the measured energy gaps fall below the calculations, but as the electron layer thickness increases, the results of experiments and calculations come closer. Accounting for the role of disorder in a phenomenological manner, we find better overall agreement between the measured and calculated energy gaps, although some puzzling discrepancies remain.

15.
Nat Mater ; 20(5): 632-637, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33633355

RESUMO

Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron-electron interactions. Many key observations have been made in these systems as sample quality has improved over the years. Here, we present a breakthrough in sample quality via source-material purification and innovation in GaAs molecular beam epitaxy vacuum chamber design. Our samples display an ultra-high mobility of 44 × 106 cm2 V-1 s-1 at an electron density of 2.0 × 1011 cm-2. These results imply only 1 residual impurity for every 1010 Ga/As atoms. The impact of such low impurity concentration is manifold. Robust stripe and bubble phases are observed, and several new fractional quantum Hall states emerge. Furthermore, the activation gap (Δ) of the fractional quantum Hall state at the Landau-level filling (ν) = 5/2, which is widely believed to be non-Abelian and of potential use for topological quantum computing, reaches Δ ≈ 820 mK. We expect that our results will stimulate further research on interaction-driven physics in a two-dimensional setting and substantially advance the field.

16.
Proc Natl Acad Sci U S A ; 117(51): 32244-32250, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33273119

RESUMO

What are the ground states of an interacting, low-density electron system? In the absence of disorder, it has long been expected that as the electron density is lowered, the exchange energy gained by aligning the electron spins should exceed the enhancement in the kinetic (Fermi) energy, leading to a (Bloch) ferromagnetic transition. At even lower densities, another transition to a (Wigner) solid, an ordered array of electrons, should occur. Experimental access to these regimes, however, has been limited because of the absence of a material platform that supports an electron system with very high quality (low disorder) and low density simultaneously. Here we explore the ground states of interacting electrons in an exceptionally clean, two-dimensional electron system confined to a modulation-doped AlAs quantum well. The large electron effective mass in this system allows us to reach very large values of the interaction parameter [Formula: see text], defined as the ratio of the Coulomb to Fermi energies. As we lower the electron density via gate bias, we find a sequence of phases, qualitatively consistent with the above scenario: a paramagnetic phase at large densities, a spontaneous transition to a ferromagnetic state when [Formula: see text] surpasses 35, and then a phase with strongly nonlinear current-voltage characteristics, suggestive of a pinned Wigner solid, when [Formula: see text] exceeds [Formula: see text] However, our sample makes a transition to an insulating state at [Formula: see text], preceding the onset of the spontaneous ferromagnetism, implying that besides interaction, the role of disorder must also be taken into account in understanding the different phases of a realistic dilute electron system.

17.
Phys Rev Lett ; 125(4): 046601, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794794

RESUMO

A fundamental concept in physics is the Fermi surface, the constant-energy surface in momentum space encompassing all the occupied quantum states at absolute zero temperature. In 1960, Luttinger postulated that the area enclosed by the Fermi surface should remain unaffected even when electron-electron interaction is turned on, so long as the interaction does not cause a phase transition. Understanding what determines the Fermi surface size is a crucial and yet unsolved problem in strongly interacting systems such as high-T_{c} superconductors. Here we present a precise test of the Luttinger theorem for a two-dimensional Fermi liquid system where the exotic quasiparticles themselves emerge from the strong interaction, namely, for the Fermi sea of composite fermions (CFs). Via direct, geometric resonance measurements of the CFs' Fermi wave vector down to very low electron densities, we show that the Luttinger theorem is obeyed over a significant range of interaction strengths, in the sense that the Fermi sea area is determined by the density of the minority carriers in the lowest Landau level. Our data also address the ongoing debates on whether or not CFs obey particle-hole symmetry, and if they are Dirac particles. We find that particle-hole symmetry is obeyed, but the measured Fermi sea area differs quantitatively from that predicted by the Dirac model for CFs.

18.
Phys Rev Lett ; 125(3): 036601, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745416

RESUMO

A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (ν≃1/5). In dilute GaAs 2D hole systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (ν≃1/3). Here we report our measurements of the fundamental temperature vs filling phase diagram for the 2D holes' WS-liquid thermal melting. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs filling WS-liquid quantum melting phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.

19.
Phys Rev Lett ; 124(15): 156801, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357056

RESUMO

We report on detailed experimental studies of a high-quality heterojunction insulated-gate field-effect transistor (HIGFET) to probe the particle-hole symmetry of the fractional quantum Hall effect (FQHE) states about half-filling in the lowest Landau level. The HIGFET is specially designed to vary the density of a two-dimensional electronic system under constant magnetic fields. We find in our constant magnetic field, variable density measurements that the sequence of FQHE states at filling factors ν=1/3,2/5,3/7… and its particle-hole conjugate states at filling factors 1-ν=2/3,3/5,4/7… have a very similar energy gap. Moreover, a reflection symmetry can be established in the magnetoconductivities between the ν and 1-ν states about half-filling. Our results demonstrate that the FQHE states in the lowest Landau level are manifestly particle-hole symmetric.

20.
Phys Rev Lett ; 124(6): 067601, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109097

RESUMO

It is well established that the ground states of a two-dimensional electron gas with half-filled high (N≥2) Landau levels are compressible charge-ordered states, known as quantum Hall stripe (QHS) phases. The generic features of QHSs are a maximum (minimum) in a longitudinal resistance R_{xx} (R_{yy}) and a nonquantized Hall resistance R_{H}. Here, we report on emergent minima (maxima) in R_{xx} (R_{yy}) and plateaulike features in R_{H} in half-filled N≥3 Landau levels. Remarkably, these unexpected features develop at temperatures considerably lower than the onset temperature of QHSs, suggestive of a new ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...